DIVISION 23 8313 Radiant Electric Heating Cables

LOW VOLTAGE DE-ICING / SNOW MELTING SYSTEM IN CONCRETE

PART 1 GENERAL

1.1 SUMMARY

A. Includes but not limited to:
 1. Furnish and install low voltage de-icing / snow melting cable system in new concrete as described in Contract Documents.

B. Related Sections:
 2. Section 32 1400 – Unit Paving: Installation coordination with unit pavers.
 3. Section 03 3000 – Cast-In-Place Concrete.
 4. Section 26 0600 – Electrical: Materials and installation of wiring and electrical power source.

1.2 SYSTEM DESCRIPTION

A. The system shall consist of all equipment and materials for a complete snow melting system to be installed in new concrete.

B. The area covered and heat density (measured by Watts or BTU equivalent) per linear foot of heating element or square foot of area for each Heatizon System product are determined by the spacing between adjacent runs of heating element, the total length of heating element, and the size of the transformer. See manufacturer’s installation instructions for more detailed information.

C. The extent of the snow and ice melting system is as shown on specification sheets and architectural drawings. Whenever possible, The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) design criterion should be followed. Control Joints shall be identified and marked for jumpers.

1.3 ELECTRICAL CODES AND STANDARDS

A. The entire design and installation of the Heatizon Tuff Cable® System shall comply with the Manufacturer’s Installation Manual.

B. National Electrical Code (NEC) for US installations; Canadian Standards Association (CSA) for Canadian Installations. (Current Editions).

C. Requirements of the "Authority Having Jurisdiction".

D. All Tuff Cable® Heaters shall be approved to CSA and UL Standards for this application.
 1. Self-regulating cables are not acceptable for this application.
 2. Cables that are not copper stranded conductors are not acceptable for this application.
 3. Line voltage cables are not acceptable for this application.

1.4 SUBMITTALS

A. Product Data:
 1. Submit manufacturers technical product data and written installation instructions for snow melting cable system.

B. Shop Drawings:
 1. At Architect’s request, submit drawings showing layout of system Control Unit, activation
device, grounding connections, and heating cables required to provide complete operating system. Include the following:

a. Locations for activation devices.
b. Location of low-voltage heating cable step-down transformer and control box.
c. Cold-lead cable runs from transformer to heating element connection points.
d. Heating element layout and spacing.
e. Cold-lead jumpers between non-adjacent areas.
f. Connections between cold-lead and heating element.
g. Low-voltage wiring between control box and activation device.
h. Location of aerial or slab-mounted temperature/moisture sensor(s).
i. Low-voltage wiring between sensor(s) and activation device(s).
j. Differentiate between:
 1) Control wiring.
 2) Heating element.
 3) Cold-lead.
 4) Branch-circuit wiring.
k. Differentiate between zones of heating element.

C. Operation and Maintenance Data:
1. Submit manufacturer’s written maintenance and operation instructions for system.

D. Warranty:
1. Submit signed copy of system manufacturer’s standard warranty for system.

1.5 QUALITY ASSURANCE

A. Manufacturer’s Qualifications:
1. Firm regularly engaged in manufacturing of electric cable heating elements, of type, sizes and ratings required, whose products have been in satisfactory use in similar service for not less than five years.

B. Installer Qualifications:
1. Licensed Contractor with a minimum of two years successful certified experience installing projects utilizing electric heating cable systems equal to systems specified in this section.

C. Regulatory Requirements:
1. Comply with applicable local electrical code requirements of local authorities having jurisdiction.
2. Provide products that are listed, recognized, and labeled by Nationally Recognized Testing Laboratory (NRTL) that include but are not limited to:
 a. ETL subsidiary of Intertek.
 b. Canadian Standards Association (CSA).
 c. Underwriters Laboratories (UL).
4. Conforms with requirements of “Power Units other than Class 2” (UL-1012).
5. Conform with requirements of “Outline of investigation for Roof and Gutter De-icing Cable Units,” (UL – 1588 Issue 4, dated May 24, 2002), and “IEEE Recommended Practice for Electrical Impedance, Inductive and Skin Effect Heating of Pipelines and Vessels” (IEEE 844-2000).
6. Conform to requirements of “Dry-Type General Purpose and Power Transformers” (UL – 1561).

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver, store, and handle in accordance with manufacturer’s written instructions. Store the
materials in dry indoor location off the ground.

B. Remove damaged materials from job site and replace with new at no additional cost to Owner.

1.7 WARRANTY

A. Provide Manufacturers Standard with following requirements:
 1. Control Unit Components: 1 year
 2. Power Transformer: 5 years
 3. Heating Element: 25 years

PART 2 PRODUCTS

2.1 MANUFACTURER

A. Approved Manufacturers:
 1. Heatizon Systems, 9 Morris Lane, Clifton Park, New York 12065 (888) 448-0555
 www.comfortradiant.com - info@comfortradiant.com

2.2 COMPONENTS

A. Heating Element:
 1. Copper stranded cable insulated with chemical- and gasoline-resistant thermoplastic
 vinyl and sheathed with nylon jacket for corrosion and mechanical protection.
 2. Rated for operating at variable output of 0 to 12 watts per linear foot.
 3. Maximum Operating Voltage: 0.118 volts per linear foot of heating element.
 4. Maximum Secondary Voltage: Not to exceed 65.5 volts.
 5. Heating Element Operating Temperature: Not to exceed 80 degrees C.

B. Heating Cable Power Transformer:
 1. Properly sized so cable heating element operation is less than 96 amps.
 2. Multi tapped on primary side to allow for operation of supply of 120, 208, 240, and/or
 277 volts.
 3. Multi tapped on secondary side to allow proper operation when operating range of
 heating elements lengths.
 4. Heatizon Systems Options:
 a. S050 (0.5kVA)
 b. S101 (1kVA)
 c. S102 (2kVA)
 d. S103 (3kVA)
 e. S104 (4kVA)
 f. S105 (5kVA)
 g. S106 (6kVA)
 h. S202 (2x2kVA) (single primary with dual secondary's)
 i. S203 (2x3kVA) (single primary with dual secondary's)

C. Control Unit:
 1. Provide unit that:
 a. Soft starts transformer.
 b. Monitors overall system for proper and safe operation.
 c. Interfaces with activation device.
 d. Shuts system off in event of fault.
 e. Provides protection for overcurrent, undercurrent and high temperature
 transformer (CBX6T and CBX23T models have a 24VAC power supply for
 Activation Device).
 2. Provide means of faults and fault status.
3. Fitted with power service disconnect rated for system operating range.
4. Heatizon Systems Control Units: SLC500, CBX6, CBX6T, CBX23, CBX23T, CBX7, and RADIANT8 (CBX6T, CBX23T, and RADIANT8 models have a 24VAC power supply for Activation Devices).

D. Activation Device:
1. Provide unit with a dry contact.
2. Provide one or more of the following:
 a. Pavement Mounted Temperature / Moisture Sensor: Examples: M431
 b. Remote Bulb Temperature Sensor: Examples: M320 or M336
 c. Aerial Mounted Temperature / Moisture Sensor: Examples: M326A24, M326ARS24, M326A, or M326ARS
 d. 12 hour Mechanical Timer: M325D
 e. 24 hour Programmable Timer: Model M323
3. Multiple Circuits for Control, Monitoring, and Load Management:
 a. Where controls exceed 3 in total on one activation scheme, use M329 12 Channel Selector Box or M346 Monitor Station.
 b. Where remote monitoring is necessary use M346 Monitor Station
 c. Where individual zone control in necessary us M329 12 Channel Selector Box or M346 Monitor Station.
 d. Where separate activation and control with M330 Relay Panel Series line voltage products use M346 Monitor Station.

2.3 ACCESSORIES

A. Insulation:
 1. Concrete slab and pavers:
 a. Provide ¾" or 1" thick extruded polystyrene insulation below concrete slab prior to concrete pour. Insulation shall be rated at the appropriate mechanical properties for each application.

B. Reinforcing:
 1. Provide welded wire fabric of the appropriate pattern and gauge to accommodate the spacing of the heating element in new pour applications. Wire fabric will hold heating element in place while concrete is poured. Concrete or Plastic chairs support the welded wire fabric and the heating element at the appropriate depth from the surface of the slab.

C. Control Joints:
 1. Jumper under any and all joints and markers in asphalt and concrete using Heatizon JUMPERKIT joint/marker jumper kit.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine areas where heating element is to be installed for proper installation, cleanliness, or conditions that may hinder successful installation of snow melting system.
 1. Notify Contractor in writing of items needing correction.
 2. Do not install snow melting system until faulty conditions are corrected.

3.2 INSTALLATION

A. Interface with Other Work:
 1. Coordinate installation of low voltage cable snow melting system with appropriate sections of Division 26 Electrical.

B. Install snow melting system, including Heating Element, Transformer, Control Unit, and Activation Device, in accordance with Manufacturer’s written instructions and approved Shop
Drawings.

C. For new pour concrete applications:
 1. Install insulation on grade and reinforcement on insulation. Join edges of reinforcement with wire ties.
 2. Place reinforcement with attached cable on chairs such that it will be 1½" - 2" below the finished surface of the concrete slab.

D. Attach manufacturer's supplied red octagonal warning sign (STOP! DANGER!) on surface in which system is installed.

3.3 FIELD QUALITY CONTROL

A. Testing as directed by system manufacturer:
 1. Prior to covering, visually inspect heating element and cold leads for cuts and damage; repair as necessary.
 2. Check for continuity to any conductive material, including but not limited to metal; eliminate as necessary.
 3. Conduct After-Installation Element Tests per manufacturers installation instructions. Test system in presence of Architect, Contractor, and Owner’s Representative, to be certain system functions in accordance with design intent.

B. Verify that all heating element is completely embedded.

C. Immediately prior to and immediately following concrete pour, check each cable element system for electrical continuity and check for electrical isolation (resistance) to ground and any metallic materials near cable heating element.

3.4 DEMONSTRATION

A. Provide adequate demonstration and training to Owner in operation and maintenance of system.

END OF SECTION